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TEMPERATURE FIELD IN A HALFSPACE WITH A PARALLELEPIPED-
SHAPED HEAT-RELEASING INCLUSION

Yu. M. Kolyano, Yu. M. Krichevets, UDC 536.24
E. G. Ivanik, and V. I. Gavrysh

A study is made of the stationary temperature field in a half-space containing
a foreign heat-releasing inclusion of parallelepiped shape of small dimensions.

In the operation of metalloceramic bodies of radio-electronic apparatus a need a:ises
for studying temperature fields for bodies with foreign inclusions of small dimensions.

In this connection we consider an isotropic halfspace containing, at a distance ! from
its boundary surface, a foreign inclusion of parallelepiped shape and volume V; = 8hbd in
whose vicinity uniformly distributed internal heat sources of strength q, are operative.

We refer the body in question to a rectangular cartesian coordinate system. We place the
coordinate origin at the center of the inclusion. On the boundary surface z = —d—¢ a con-
vective heat exchange is specified with external mean temperature t..

For the determination of the stationary temperature field we have the heat conduction
equation [1]

09'] d ]
— }\, y — — }\, ’ H T
ax[(x,y 2) axJ—]—ay[(xyz) yJ—i— -
? o1
-+ E [7»()(, Y, Z) 92 } = Q(xr Y, Z),

where
Mix, y, 2) =2+ (A — M)N(x, YN (y, B) N (2, d);
Q¥ 4, 2)=qN (x, N (y, b)N (z, a); (2
O=1—1t; Nx, i)=S(x+h) —Sx—h).
The boundary conditions may be wrigten in the form

i)

7\,1 a o= O:Z@ fOrZ’T: '""d——’l, (-')—:O for 2_"'m,
Z (3)
0-0,22 _0 for rj—>o00, ©=0, 22 0 for |y oo,
dx 7y

We assume that the dimensions of the foreign inclusion are small in comparison with
the distance from the coupling boundary to the boundary surface. We introduce the addiced
thermal conductivity A, = A;V; of the inclusion, the adduced power Q, = q,V, of the heat
sources acting in it, and in Egqs. (2) we pass to the limit, letting h-> 0, b~ 0, d > 1,
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N(x,h):~

maintaining A, and Q, constant, and using the well-known [2] limit lim = §(x) . As a
result we have o2

Mx, ¥ 2) =k +Ab (X Y, 2), (4)

Qe y» 2) = Qud(x, 9, 2)- (5)

Although the local non-homogeneity described by the relation (4) containing the Dirac
delta-function is formally concentrated at the origin, it is, in fact, characterized by
finite dimensions associated with the volume V. Thus the finite dimensions of the inclu-
sion are effectively accounted for by relation (4) (see [3]).

Substituting expressions (4) and (5) into Eq. (1), we obtain the eqaution

* 000, y, 0) |* T, T
AB + _A_O_ M & (x)8(y, 2)+ ___(___y_)__ 8 ()8(x, 2)+
7\41 ax x==0 a y=0
® {6
+M* 8 (2) 6 (x, y)] - % 8(x, Y, 2), (6)
(72 2=0 A’l
where
009 (x, 0, 0) |* ____1_[ 08 (x, 0, 0 . 089 (x, 0, 0)
ox x=0 2 L 6x x=-0 ax x==—0 )

Applying the Fourier integral transform with respect to coordinates x and y to equation
(6) and conditions (2}, we arrive at the following boundary value problem:

d20

az — 920 = — P,8(2) — P¥' (2), 7
de = e
}VIE:(ZZ@ for Z:—-d““l, 6 =0 for 2~ 00, (8)
where
~ 17 v
7= on { expiaxdr | @expipydy; v = a2 + B
p,— Q . p A 09(00 2 ¥
oy |0 omhy 9 o
Here we have taken into account that —QE!ELJE—QL'* =:£¥2«L % 0) " 0.
o Ox =0 dy y=0
The solution of Eq. (7), subject to conditions (8), has the form
~  1(P ign z -
0 = -E —Y}‘[Fl(z)"‘Fz(z+dl)]““P2[F1(z)51gnz+F2(Z+d1)]}’ (%)

where

a,—h
Fi(2) = exp(—vlal) Fa(2) = 2 exp (—y2); dy=2(d+ ).
d‘z+}"17
Performing the inverse transform on Eq. (9) and using the reference data from [4, 51,
we arrive at an expression for the dimensionless temperature
1 1
1 —— —_——
T O0=—1Jp (X, Y, 2)+e¢ *(X,Y,Z+D)—
Qo 4n

3

—Biy(X, v, z+D)1+-%P2[2cp”T<X, Y, Z)— (10)

rofes

—(Z+D)e *(X, Y, Z+D)+Bip (X, ¥, Z+ D),
where

- _’l‘; Y:%; Z=—7—;D=%; ©(X, Y, Z) = X2+ Y2 4 7%
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Fig. 1. Dependence of dimensionless temperature T on: (a)
dimensionless coordinate X for Bi =1, Z = 0.02; (b) dimen-
sionless coordinate Z for Bi = 1, X = 0.02; (c¢) dimension-

less coordinate Z for X = 0.02.

8

1

B(X, Y, Z)=2expBiZ [ exp(—BiZ)g (X, Y, Z)dZ;

e

N

o0 3
2

B (X, Y, 2)=2expBiZ [ Zexp(—BiZ)g (X, ¥, 2)dZ;
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For Bi = 0 expression (10) has the form

1 3 \
T —l-[cp T(X, ¥, 2) (1 + - PZe X Y, D))
4n 2 /

(11)
e (X, V. Z -k D)(I — %P2(2+D)¢*1(X, Y, Z +D))j .

Hore 00 (0, 0, z) |* ::(_l__u___.L_H__)/[j /4ﬂ_+.___é&___> )
dz =0 @ Ad+r] ( 42y (d + 1P

Using formulas (10) and (11) with Y = 0, calculations were made and a study was con-
ducted of the dimensionless temperature distribution T for the following initial data:

—
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TABLE 1. Dependence of Dimensionless Temperature T on Dimen-
sionless Coordinate Z for X = 0.02

Bi | " Bi
— Z-10% —z-1p®
o | 1 5 | o | 0 5
|
22 0,6502 | 0,5924 0,5769 10 1,9731 1,9177 1,9038
18 0,8498 | 0,7928 0,7781 6 4,2007 4,1460 4,1324
14 1,2075 1,1514 1,1371 2 13,6778 | 13,6231 13,6094

basic material, ceramic BK94-1; inclusion material, molybdenum; h/%2 = b/¢ = d/¢ = 0.02. Nu-
merical results illustrating the variation of the dimensionless temperature along coordinate
X for Z = 0.02 and along coordinate Z for X = 0.02 are shown in Fig. 1; values of the dimen-
sionless temperature for —22 < z+10%2 € -2 and Bi = 0; 1; 5 are given in Table 1.

It is evident from Figs. la and 1lb that the temperature increases monotonically with
decrease in the values of X and |Z| and attains its largest value in the region of operation
of the heat sources (curve 1 in the case of a foreign inclusion in the halfspace; curve 2
in the case of a homogeneous halfspace). It is seen that presence of a foreign heat-releas-
ing inclusion leads to a significant increase in the temperature. In the region !ZI < 0.12
a symmetry may be observed in the temperature field with respect to the plane Z = 0.

Figure lc illustrates the dependence of temperature T on coordinate Z for various
values of the Biot number. It is evident that with an increase in heat emission the tem-
perature diminishes.

NOTATION

T(x, y, z), temperature field; A(x, y, z), thermal conductivity coefficient of nonhomo-
geneous body; A;, A,, thermal conductivity coefficients of basic material and of the inclu-
sion; @y, coefficient of heat transfer from the surface z = —¢ — d; S({); symmetric unit

function; A = 3?/3x% + 32/8y* + 32/6z?, Laplace operator; &(Z), Dirac delta function; Bi =
(a32)/A;, Biot number.
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